Photocatalytic Activity of Zinc Oxide Nanoparticles Coated on Activated Carbon Made from Mango Seed in Removing Acid Black 1 from Aqueous Solutions

نویسندگان

  • Abdollah Dargahi Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
  • Ghobad Ahmadidoost Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
  • Mohammadreza Samaghandi Research Center for Health Sciences and Department of Environmental Engineering School of Health, Hamadan University of Medical Sciences, Hamadan, Iran.
  • Yaser Vaziri Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
چکیده مقاله:

Background & Aims of the Study: Discharge of industrial wastewater to the environment has harmful effects. Textile industry is one of the industries that burdens pollutants to the environment. So the wastewater of these industries must be treated before discharging into the environment. Various methods for removing industrial pollutants have been investigated. Among them, AOPs have attracted much attention due to their ease of use, economic efficiency, and high performance. Therefore, the purpose of this study was to investigate the photocatalytic role of ZnO nanoparticles coated on activated carbon made from mango seed as an advanced oxidation process in removal of Acid Black 1 from aqueous solutions. Materials & Methods: This experimental research was performed in a 1000 cc batch reactor. In this process, effect of initial pH (3-9), initial dose of Acid Black (20-200 mg/L), modified photocatalyst concentration (20-100 mg/L) and reaction time (5-30 min) were investigated. The reactor contained of a 55-watt low-pressure mercury lamp inside a steel chamber. Results: The results showed that in this reserch the max removal efficiency of Acid Black 1 at pH=3, contact time of 30 min, initial dose of “Acid Black 1” 100 mg/L and modified photocatalyst dose of 0.1 g/L, was equal to 95%. Conclusion: This process had a high efficiency for Acid Black 1 Removal and it can be used to reduce the dye concentrations in textile wastewater before final discharge to the environment. Due to the lack of sludge and waste production, this environmental friendly process showed a remarkable potential for the purification of industrial effluents.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocatalytic Role of Zinc Oxide Nanoparticles on Synthetic Activated Carbon to Remove Antibiotic from Aquatic Environment

Background & Aims of the Study: The presence of antibiotics in the environment, especially in aquatic environments is a major concern for health and the environment. The advanced oxidation process due to the ease of use, economical advantages and high performance have attracted a lot of attention. The purpose of this study was Evaluating of the photocatalytic role of zinc oxide on s...

متن کامل

Investigation the Efficiency of Activated Carbon Coated with ZnO Nanoparticles Prepared by Green Synthesis Method in Removing Humic Acid from Aqueous Solutions: Kinetics and Isotherm Study

Background & objective: The presence of natural organic matter in water sources creates various problems, especially in common water treatment process. These compounds cause unfavorable taste and odor in water and are among the most important precursors of water disinfection by-products. This study was carried out to evaluate the efficiency of activated carbon (AC) and activated carbon modified...

متن کامل

Removal of phenol from aqueous solutions using persulfate-assisted, photocatalytic-activated aluminum oxide nanoparticles

The combination process of UV/ S2O82-/Al2O3 leads to the production of radicals and radical hydroxyls, which could decompose and remove various pollutants, such as phenol. The present study aimed to investigate the photocatalytic efficiency of aluminum oxide nanoparticles and persulfate compilative processes in the removal of phenol. This e...

متن کامل

Kinetic study of the photocatalytic degradation of the acid blue 113 dye in aqueous solutions using zinc oxide nanoparticles immobilized on synthetic activated carbon

Approximately 10-20% of the total dyes in the world is consumed in the textile industry. The present study aimed to investigate the photocatalytic activity of zinc oxide nanoparticles (ZnO) immobilized on synthetic activated carbon in the removal of the acid blue 113 dye from aqueous solutions. This experimental study was conducted in a photo-reactor with the useful volume of one liter. The eff...

متن کامل

Removal of Reactive Black 5 dye from Aqueous Solutions by Adsorption onto Activated Carbon of Grape Seed

Background and purpose: The control of environmental pollution especially the pollution of water resources is one of the main challenges of researchers throughout the world. So, this study aimed to investigate the efficiency of reactive black 5 dye removal from aqueous solutions by adsorption onto activated carbon of grape seed. Materials and Methods: At first, the grape seed adsorbents were p...

متن کامل

Evaluating the effectiveness of Tamarindus indica partially activated seed coat biomass in removing of nitrates from aqueous solutions

Biomass derived from Tamarindus indica partially activated seed coat was investigated for the removal of nitrate ions from aqueous solutions. Batch experiments were performed to evaluate the parameters like pH, contact time, sorbent dose and initial nitrate concentration. pH of the solution played vital role. The maximum sorption observed at pH=7, sorbent dose 300mg, contact time at 120min, ini...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 7  شماره 4

صفحات  242- 250

تاریخ انتشار 2018-11

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023